Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Hanaoka, Goichiro; Shikata, Junji; Watanabe, Yohei (Ed.)We build the first sub-linear (in fact, potentially constant-time) public-key searchable encryption system: server can publish a public key PK. anybody can build an encrypted index for document D under PK. client holding the index can obtain a token π§π€ from the server to check if a keyword w belongs to D. search using π§π€ is almost as fast (e.g., sub-linear) as the non-private search. server granting the token does not learn anything about the document D, beyond the keyword w. yet, the token π§π€ is specific to the pair (D, w): the client does not learn if other keywords π€β²β π€ belong to D, or if w belongs to other, freshly indexed documents π·β². server cannot fool the client by giving a wrong token π§π€. We call such a primitive Encapsulated Search Index (ESI). Our ESI scheme can be made (t, n)-distributed among n servers in the best possible way: non-interactive, verifiable, and resilient to any coalition of up to (π‘β1) malicious servers. We also introduce the notion of delegatable ESI and show how to extend our construction to this setting. Our solution β including public indexing, sub-linear search, delegation, and distributed token generation β is deployed as a commercial application by a real-world company.more » « less
-
Dachman-Soled, Dana (Ed.)Pseudorandom number generators with input (PRNGs) are cryptographic algorithms that generate pseudorandom bits from accumulated entropic inputs (e.g., keystrokes, interrupt timings, etc.). This paper studies in particular PRNGs that are secure against premature next attacks (Kelsey et al., FSE '98), a class of attacks leveraging the fact that a PRNG may produce an output (which could be seen by an adversary!) before enough entropy has been accumulated. Practical designs adopt either unsound entropy-estimation methods to prevent such attacks (as in Linuxβs /dev/random) or sophisticated pool-based approaches as in Yarrow (MacOS/FreeBSD) and Fortuna (Windows). The only prior theoretical study of premature next attacks (Dodis et al., Algorithmica '17) considers either a seeded setting or assumes constant entropy rate, and thus falls short of providing and validating practical designs. Assuming the availability of random seed is particularly problematic, first because this requires us to somehow generate a random seed without using our PRNG, but also because we must ensure that the entropy inputs to the PRNG remain independent of the seed. Indeed, all practical designs are seedless. However, prior works on seedless PRNGs (Coretti et al., CRYPTO '19; Dodis et al., ITC '21, CRYPTO'21) do not consider premature next attacks. The main goal of this paper is to investigate the feasibility of theoretically sound seedless PRNGs that are secure against premature next attacks. To this end, we make the following contributions: 1) We prove that it is impossible to achieve seedless PRNGs that are secure against premature-next attacks, even in a rather weak model. Namely, the impossibility holds even when the entropic inputs to the PRNG are independent. In particular, our impossibility result holds in settings where seedless PRNGs are otherwise possible. 2) Given the above impossibility result, we investigate whether existing seedless pool-based approaches meant to overcome premature next attacks in practical designs provide meaningful guarantees in certain settings. Specifically, we show the following. 3) We introduce a natural condition on the entropic input and prove that it implies security of the round-robin entropy accumulation PRNG used by Windows 10, called Fortuna. Intuitively, our condition requires the input entropy "not to vary too wildly" within a given round-robin round. 4) We prove that the "root pool" approach (also used in Windows 10) is secure for general entropy inputs, provided that the systemβs state is not compromised after system startup.more » « less
An official website of the United States government
